

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIEN	NCE
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: OCH701S	COURSE NAME: ORGANIC CHEMISTRY 2
SESSION: JULY 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMEN	TARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	DR. MARIUS MUTORWA
MODERATOR:	DR. RENATE HANS

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly
4.	All written work must be done in blue or black in and sketches
	must be done in pencil
5.	No book, notes and other additional aids are allowed

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

NMR and IR Spectral Data, pKa Chart and Periodic Table

THIS QUESTION PAPER CONSISTS OF 14 PAGES (Including this front page)

QUESTION 1: Multiple Choice Questions

[50]

- There are 25 multiple choice questions and each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1.1 For the functional group(s) on the following molecule, what characteristic IR absorption(s) would be expected (ignoring C-H absorptions)?

- A. Peaks around 1700 and 1650 cm⁻¹
- B. Peaks around 3300 and 1710 cm⁻¹
- C. Peaks around 1650 and 3300 cm⁻¹
- D. Only a peak around 3300 cm⁻¹
- 1.2 Which one of the following compounds will have the lowest wavenumber for carbonyl absorption?

- A. I
- B. II
- C. III
- D. IV
- E. V
- 1.3 Which of the following is true about the molecular weight and the M⁺
 -m/z value for the following compound?

- A. odd molecular weight, m/z-115
- B. odd molecular weight, m/z-121
- C. even molecular weight, m/z-96
- D. even molecular weight, m/z-132

1.4 Which one of the following compounds is consistent with the mass spectrum below?

- A. $CH_3CH_2CH(CH_3)_2$
- B. CH₃CHOHCH₂CH₃
- C. CH₃CH₂OCH₂CH₃
- D. CH₃CH₂NHCH₂CH₃

1.5 How many signals would you expect to find in the $^1\mathrm{H}$ NMR spectrum of the following compound?

- A. 5
- B. 6
- C. 7
- D. 8

1.6 Which of the following protons appear most upfield in the ¹H NMR spectrum?

- A. I
- B. II
- C. III
- D. IV

1.7 Which of the following compounds will display a singlet, a triplet and a quartet in the 1 H NMR spectrum?

- A. 2-chloro-4-methylpentane
- B. 3-chloro-2-methylpentane
- C. 3-chloro-3-methylpentane
- D. 1-chloro-2,2-dimethylbutane

1.8 Which one of the following dienes will have the highest heat of hydrogenation?

- A. I
- B. II
- C. III
- D. IV
- E. V

1.9 What is the IUPAC name for the following compound?

- A. (2E,4Z,6E)-3,4,7,8-tetramethyl-2,4,6-heptatriene
- B. (2Z,4E,6E)-3,4,7-trimethyl-2,4,6-octatriene
- C. (2E,4Z,6E)-2,5,6-trimethyl-3,5,7-octatriene
- D. (2E,4E,6E)-2,5,6-trimethyl-2,4,6-octatriene

1.10 Which of the following diene(s) can not undergo the Diels-Alder reaction?

- A. I
- B. II
- C. III
- D. IV
- E. I and IV

1.11 What is the IUPAC name for the following compound?

- A. 6-ethyl-4-fluoro-3-methylbenzaldehyde
- B. 2-ethyl-4-fluoro-5-methylbenzaldehyde
- C. 1-aldehyde-2-ethyl-4-fluoro-5-methylbenzene
- D. 2-ethyl-4-fluoro-1-formyl-5-methylbenzene
- 1.12 Which one of the following compounds is aromatic?

- A. I
- B. II
- C. III
- D. IV
- 1.13 Which of the following alkyl halides reacts the fastest in an SN1 reaction?

Δ

R

C

D

- 1.14 Predict the major product for the reaction between benzene and 2-chlorobutane in the presence of AlCl₃.
 - A. t-butylbenzene
 - B. sec-butylbenzene
 - C. ethylbenzene
 - D. isopropylbenzene

1.15 Arrange the following compounds in order of decreasing reactivity towards electrophilic aromatic substitution:

- A. V>II>I>III>IV
- B. II>V>III>IV
- C. IV>I>III>V>II
- D. |||>||>|V>V

1.16 Predict the major product for the following reaction.

- Α. Ι
- B. II
- C. III
- D. IV

1.17 What is the IUPAC name for the following compound?

- A. 4-penten-2-methyl-2-ol
- B. 4-methyl-1-penten-2-ol
- C. 2-methyl-4-penten-2-ol
- D. 4-methyl-1-penten-4-ol
- E. 4-hydroxy-4-methyl-1-pentene

1.18 Which one of the following alcohols is most acidic?

- A. I
- B. II
- C. III
- D. I and III are equal

1.19 Provide the reagents necessary to carry out the following conversion.

- A. NaOH/H₂O
- B. 1. NaOCH₃, 2. H₃O⁺
- C. 1. $(CH_3)_3COK$, 2. BH_3 , 3. $H_2O_2/NaOH/H_2O$
- D. 1. (CH₃)₃COK, 2. H₃O⁺

1.20 What is the IUPAC name for the following compound?

- A. 2,4-dimethyl-2-pentenone
- B. 2-methyl-5-methylcyclopent-2-enone
- C. 3,5-dimethylcyclopent-2-enone
- D. 2,4-dimethylcyclopent-2-enone

1.21 Compound A on ozonolysis yields acetophenone and propanal. What is the structure of compound A?

Compound A
$$\frac{1. O_3}{2. (CH_3)_2S}$$
 Acetophenone + propanal

- A. 2-phenyl-2-pentene
- B. 1-phenyl-1-hexene
- C. 1-phenyl-2-pentene
- D. 2-phenyl-2-hexene
- 1.22 Which one of the following compounds gives 5-methyl-3-heptanol with LiAlH $_4$ followed by water?

- A. I
- B. II
- C. III
- D. IV
- 1.23 What is the IUPAC name of the following compound?

- A. 2-oxohexanoic acid
- B. 5- oxohexanoic acid
- C. methyl butyroxo ketone
- D. 4-ketopentanoic acid
- 1.24 Rank the following acids in decreasing (strongest to weakest) order of acidity.

- A. V>III>I>II>IV
- B. ||>|>|||>V>|V
- C. IV>III>I>II>V
- D. IV>V>III>I>II
- 1.25 Predict the product for the following reaction.

- A. A
- B. B
- C. C
- D. D

END OF SECTION A

[50]

QUESTION 2

[10]

What is (are) the product(s) of the following reactions?

Note: Each question carries 2 marks.

a.
$$0$$

$$1. \text{ LiAlH}_4 \text{ excess}$$

$$2. \text{ H}_2\text{O}$$

b.

d.

$$\begin{array}{c}
O \\
COCH_3
\end{array}$$

$$\begin{array}{c}
(CH_3)_3CCI \\
AICI_3
\end{array}$$

e.

QUESTION 3 [12]

Identify the lettered intermediates (A-F) in the following reaction sequence.

Note: Each question carries 2 marks.

$$\text{HC} \equiv \text{CH} \xrightarrow{[1] \text{NaNH}_2} \quad \textbf{C} \xrightarrow{[1] \text{NaNH}_2} \quad \textbf{D} \xrightarrow{[1] \text{O}_3} \quad \textbf{E} \quad + \quad \textbf{F}$$

$$\textbf{b.}$$

QUESTION 4 [13]

Draw a stepwise detailed reaction mechanism for the intramolecular reaction below.

QUESTION 5 [15]

An unknown compound **A** has the molecular formula $C_{12}H_{16}O$. A absorbs strongly in the IR at 1715 cm⁻¹. The ¹H NMR spectral data for **A** are given below. What is the structure of **A**?

absorption	ppm	ratio of absorbing H's
singlet	1.0	6
triplet	1.2	3
quartet	2.2	2
broad singlet	7.0	5

THE END

GOODLUCK

¹H NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
-С-н sp³ / 1	0.9–2	C=C	4.5–6
 RCH₃ R₂CH₂ R₃CH 	~0.9 ~1.3 ~1.7	Н	6.5–8
Z C-C-H Z = C. O. N	1.5–2.5	R H	9–10
—C≡C-H	~2.5	P. OH	10–12
Sp^{3} $Z = N. O. X$	2.5–4	RO-H or R-N-H	1–5

Important IR Absorptions

Bond type	Approximate v v (cm⁻¹)	Intensity
O-H	3600–3200	strong, broad
N-H	3500-3200	medium
C-H	~3000	
 C_{sp}² − H 	3000-2850	strong
 C_{sp²}-H 	3150-3000	medium
 C_{sp}−H 	3300	medium
C≡C	2250	medium
C≡N	2250	medium
C=O	1800-1650 (often ~1700)	strong
C=C	1650	medium
	1600, 1500	medium

hellum 2 2 4.0026	neon 10	2	20.180	argon 18	J	39.948	krypton 36	<u>\</u>	83.80	xenon 54	X	131.29	nadon 86		[222]			
4	fluorine 9	L	18.998	chlorine 17	O	35.453	bromine 35	00	79.904	odine 53	manu.	126.90	astatine 85	A	[210]			
	oxygen 8	0	15.999	sulfur 16	G	32.065	selenium 34	S	78.96	tellurium 52	0	127.60	polonium 84	0	[503]			
	nitrogen 7		14.007	phosphorus 15	0	30.974	arsenic 33	S	74.922	antimony 51	S	121.76	bismuth 83	00	208.98			
	carbon 6	ပ	12.011	14	S	28.086	germanium 32	9	72.61	iin 50	S	118.71	lead 82	0	207.2	nnunquadium 114		[289]
,		00										_						
							zinc 30	Z N	62.39	cadmium 48	0	112.41	mercuny 80	O	200.59	ununbium 112	2000	[277]
							copper 29	S	63,546	silver 47	Pod	107.87	plog 79	T	196.97	unumunium 111	35	[272]
							nickel 28		58.693	palladium 46	0	106.42	platinum 78	Ž	195.08	ununnilium 110	5	[271]
						- 1										=		
							iou 26	0	55.845	ruthenium 44	2	101.07	osmium 76	OS	190.23	nassium 108	S	[269]
											ပ -							
							chromium 24	ວັ	51.996	molybdenum 42	2	95.94	tungsten 74		183.84	106	S	[266]
						L					2							
							titanium 22	-	47.867	zirconium 40	Z	91.224	hafnium 72		178.49	104	Ť	[261]
							scandium 21	ပ	44.956	yttrium 39	>	906'88	lutetium 71	7	174.97	103		[262]
													57-70	*		89-102	*	
	beryllium 4	മ	9.0122	12	S	24.305	calcium 20	ප	40.078	strontium 38	জ	87.62	barium 56	മ	137.33	88 88	8	[226]
hydrogen 1 1.0079	ifthium 3		6.941	11	Z	22.990	nuissium 19	¥	39.098	rubidium 37	<u>N</u>	85.468	caesium 55	ပ္သ	132.91	mancum 87	<u>_</u>	[223]

	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
* lanthanide series	22	28	29	09	61	62	83	8	65	99	29	89	69	2
	7	ပ္	۵	2	E	S S		0	2	à	2	Ľ	E	2
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* Actinide series	88	90	91	92	93	94	92	96	97	86	88	100	101	102
	Ac	_	۵	>	2	2	E	<u>ا</u>		5	S	E	7	2
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	12571	[258]	[259]